
Interleukin-23 and T helper 17-type responses in intestinal
inflammation: from cytokines to T-cell plasticity

Interleukin-23 plays a crucial role in driving
intestinal inflammation

Inflammatory bowel disease (IBD), including Crohn’s dis-

ease and ulcerative colitis, is a chronic inflammatory con-

dition of the gastrointestinal tract caused in part by an

inappropriate immune response to the intestinal microfl-

ora.1 Cells of both the innate and adaptive arms of the

immune response are believed to participate in the

inflammatory reaction by secreting pro-inflammatory

cytokines, each with multiple downstream targets and

effects. Early studies in experimental models using genetic

ablation or monoclonal antibody (mAb) neutralization of

the interleukin-12 (IL-12) p40 subunit in vivo suggested

that IL-12 and a subsequent T helper 1 (Th1)-type

response played a crucial role in colitis pathogenesis.2

However, with the discovery in 2000 by Oppmann et al.3

of a new p19 subunit that can pair with p40 to form the

cytokine IL-23, previous studies using anti-p40 mAb had

to be re-evaluated to examine if indeed IL-12 or IL-23

was driving the colitic response. Consequently, in several

models of colitis, it is now clear that IL-23 is the major

driver of intestinal inflammation.4–8 Importantly, gen-

ome-wide association studies of large cohorts of patients

with IBD and healthy controls subsequently identified

several single-nucleotide polymorphisms in the IL-23

receptor (IL-23R) gene locus associated with either sus-

ceptibility or resistance to IBD,9,10 strongly arguing that

IL-23 is of importance for disease pathogenesis also in

human IBD. The molecular mechanism(s) by which cer-

tain IL-23R single-nucleotide polymorphisms correlate

with IBD susceptibility and others with resistance is not

completely understood, but possible explanations include

enhanced versus reduced signalling through the receptor
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Summary

Interleukin-23 (IL-23) plays an essential role in driving intestinal pathol-

ogy in experimental models of both T-cell-dependent and innate colitis.

Furthermore, genome-wide association studies have identified several sin-

gle-nucleotide polymorphisms in the IL-23 receptor (IL-23R) gene that

are associated with either susceptibility or resistance to inflammatory

bowel disease in humans. Although initially found to support the expan-

sion and maintenance of CD4+ T helper 17 (Th17) cells, IL-23 is now rec-

ognized as having multiple effects on the immune response, including

restraining Foxp3+ regulatory T-cell activity and inducing the expression

of Th17-type cytokines from non-T-cell sources. Here we focus on Th17

cells and their associated cytokines IL-17A, IL-17F, IL-21 and IL-22. We

review studies performed in mouse models of colitis where these effector

cytokines have been shown to have either a pathogenic or a tissue-protec-

tive function. We also discuss the heterogeneity found within the Th17

population and the phenomenon of plasticity of Th17 cells, in particular

the ability of these lymphocytes to extinguish IL-17 expression and turn

on interferon-c production to become Th1-like ‘ex-Th17’ cells. Interleu-

kin-23 has been identified as a key driver in this process, and this may be

an additional mechanism by which IL-23 promotes pathology in the intes-

tinal tract. These ‘ex-Th17’ cells may contribute to disease pathogenesis

through their secretion of pro-inflammatory mediators.

Keywords: colitis; inflammation; interferon-c; interleukin-17A; interleu-

kin-23; T helper 17 cells
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(gain or loss of function) caused by altered ligand bind-

ing. In addition, certain IL-23R mutations have been

shown to cause alternative mRNA splicing, leading to the

formation of truncated forms of the receptor, including a

soluble form that can act as a decoy receptor,11,12 thereby

preventing IL-23 from exerting its effects on target cells.

Interleukin-23 has broad effects on both T
cells and non-T cells

Interleukin-23 is produced by activated dendritic cells

and macrophages in response to microbial stimulation

(reviewed by Langrish et al.13), but the exact mechanism

by which this cytokine contributes to the inflammatory

response in the intestine is not yet clear. Much attention

has focused on the role of IL-23 in expanding/maintain-

ing CD4+ T cells of the Th17 subset14–16 (Fig. 1), a popu-

lation characterized by its production of IL-17A, IL-17F,

IL-21 and IL-2216,17 and reported to play a pathogenic

role in animal models of autoimmune disease such as col-

lagen-induced arthritis and experimental autoimmune

encephalomyelitis (EAE).18 CD4+ Th17 cells have also

been implicated in multiple autoimmune and inflamma-

tory disorders in humans,19 and elevated levels of IL-17A,

IL-17F, IL-21 and IL-22 have been found in the inflamed

gut in both human IBD and experimental models of the

disease.6,7,20–25 The murine intestine harbours a large pro-

portion of CD4+ Th17 cells in steady-state,26 possibly

reflecting the constitutive IL-23 expression found in the

terminal ileum of healthy mice.27 Moreover, specific

constituents of the gut microbiota, e.g. segmented

filamentous bacteria, have been reported to induce this

IL-17-secreting CD4+ T-cell subset.28–30

Interleukin-23 has also been reported to inhibit the

accumulation of intestinal Foxp3+ regulatory T (Treg)

cells, a population of CD4+ T cells of importance for

maintaining intestinal homeostasis.31 Hence, using the T-

cell transfer model of colitis, in which disease is induced

in T-cell-deficient Rag)/) mice by transfer of naive wild-

type CD45RBhigh CD4+ T cells, Izcue et al.32 have demon-

strated increased frequencies of intestinal Foxp3+ cells if

the Rag)/) recipients are unable to produce IL-23. Simi-

larly, in the absence of IL-23R on donor T cells, Rag)/)

recipients show increased frequencies of colonic Foxp3+

cells, indicating that IL-23R)/) T cells are better than

wild-type T cells at developing into inducible Foxp3+

Treg (iTreg) cells, and that IL-23 inhibits iTreg cell differ-

entiation (Fig. 1).33 In the latter study, the authors also

provided evidence for a cell-extrinsic effect of IL-23 in

reducing T-cell IL-10 production. Hence, whereas high

IL-10 expression was observed from T cells isolated from

the colon of Rag)/) mice given IL-23R)/) CD45RBhigh

CD4+ cells alone, this enhanced IL-10 expression was

abrogated by co-transfer with wild-type T cells, suggesting

that IL-23-responsive wild-type cells can reduce the ability

of IL-23R)/) T cells to produce IL-1033. These findings

indicate that IL-23 may promote intestinal inflammation

by constraining tissue-protective populations and func-

tions of T cells (Fig. 1).

As IL-23 blockade has beneficial effects also in innate

colitis,5,6 this cytokine is believed to, in addition, act on

non-T cells (Fig. 1). Indeed, a recent report by Buonocore

et al.34 has demonstrated the presence of a Lin) Thy1high

SCA-1+ RORct+ innate lymphoid population that secretes

IL-17A, IL-22, and interferon-c (IFN-c) in response to

IL-23. The authors showed that these innate lymphoid

cells are found at low frequencies in the normal mouse

gut, but that they increase significantly during intestinal

inflammation. Furthermore, mAb depletion of Thy1+ cells

in 129SvEv Rag)/) mice receiving Helicobacter hepaticus

or in C57BL/6 Rag)/) animals given anti-CD40 mAb

prevented the development of colitis, suggesting that the
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Figure 1. Cartoon summarizing functions of

interleukin-23 (IL-23) that may contribute to

colitis pathogenesis. IL-23 has been shown to

promote the expansion/maintenance of CD4+

T helper 17 (Th17) cells (top right), induce the

production of Th17-type cytokines by non-T

cells/innate cells (bottom right), and inhibit

the generation of inducible Foxp3+ regulatory

T (iTreg) cells (top left). In addition, IL-23 has

been reported to reduce IL-10 production in a

cell-extrinsic manner by acting on IL-23R+ T

cells to inhibit IL-10 secretion by other CD4+

T cells (bottom left). Whether IL-23 can act

directly on T cells to inhibit IL-10 production

is currently unknown (broken arrow).
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IL-23-responsive innate lymphoid cells contribute to the

inflammatory cascade in these T-cell-independent models

of colitis.34 Importantly, the authors reported a similar

population of IL-23-responsive IL-17-secreting innate

lymphoid cells in the inflamed intestine of patients with

IBD.34 Taken together, IL-23 can contribute to intestinal

inflammation in multiple ways, from restraining Foxp3+

Treg-cell activity to inducing the expression of Th17-type

cytokines from both T cells and non-T-cell sources

(Fig. 1). Table 1 summarizes known cellular sources of

Th17-type cytokines.

Host-protective versus pathogenic roles of
Th17-type cytokines in the gut

With elevated levels of Th17-type cytokines in the colitic

gut, a lot of effort has gone into elucidating their individ-

ual role(s) in the intestine in health and disease. What

has become clear is that Th17-associated cytokines play

both host protective and pathogenic functions at mucosal

sites. The host protective roles can be divided into (i)

elimination of pathogens35,36 and (ii) tissue-protective

functions. When it comes to host defence against

microbes in the intestinal tract, IL-17A, IL-17F and IL-22

have all been shown to be important for the control of

oral Citrobacter rodentium infection, as mice deficient in

these cytokines show enhanced C. rodentium burdens in

the colon (IL-17A)/), IL-17F)/) and IL-17A)/) IL-17F)/)

mice)37 or mesenteric lymph nodes, spleen and liver

(IL-22)/) mice)38 compared with wild-type animals. The

elevated bacterial burdens were associated with reduced

levels of colonic b-defensins 1, 3 and 4 in IL-17A)/),

IL-17F)/) and IL-17A)/) IL-17F)/) mice37 and RegIIIb
and RegIIIc in IL-22)/) animals,38 in agreement with the

reported role of these cytokines in inducing the expres-

sion of antimicrobial peptides.39,40

Perhaps the best example of the tissue-protective effects

of Th17-type cytokines in the gut is that of neutralization

of IL-17A, either by mAb treatment or by genetic abla-

tion, which leads to exacerbated intestinal inflammation

in the dextran sulphate sodium (DSS) colitis model.41,42

When administered to mice for a few days via the drink-

ing water, DSS triggers an acute inflammatory response

by ‘mechanical’ disruption and injury to the epithelial

layer, leading to a rapid transient weight loss, normally

followed by recovery. (For a review of different experi-

mental models of intestinal inflammation, see Strober

et al.43) Interleukin-17A is believed to exert its host-

protective effect in this model through strengthening

tight-junction formation by inducing the expression of

claudins in intestinal epithelial cells44 and by stimulating

mucin production,45 thereby increasing mucosal barrier

function (Table 2). Similarly, compared with wild-type

mice, animals deficient in IL-22 show increased weight

loss and higher mortality rates following DSS administra-

tion, suggesting a tissue-protective role for this cytokine.46

Indeed, IL-22 has been shown to stimulate intestinal epi-

thelial cell proliferation24 and enhance goblet cell restitu-

tion and mucus production,47 both functions that would

promote intestinal barrier integrity (Table 2).

In contrast to the tissue-protective effects of IL-17A

and IL-22, mice deficient in IL-17F develop milder disease

symptoms than wild-type animals when given DSS,42 sug-

gesting that IL-17F exacerbates inflammation in this

model. Indeed, DSS-fed IL-17F)/) animals display

reduced chemokine mRNA expression in the colon com-

pared with similarly treated wild-type controls.42 The rea-

son why IL-17A)/) and IL-17F)/) mice show different

disease outcomes following DSS administration remains

unclear. Both cytokines bind receptors on myeloid and

endothelial cells, and induce the expression of IL-1b,

IL-6, tumour necrosis factor-a (TNF-a) and chemokines

involved in neutrophil recruitment.48,49 Furthermore, IL-

17A and IL-17F both signal through the same receptor

subunits IL-17RA and IL-17RC (reviewed by Gaffen50).

The precise structure of the receptors for IL-17A and

IL-17F still remains to be determined, and it is possible

Table 1. Cellular sources of T helper 17 (Th17)-type cytokines

Cytokine Cellular source References

IL-17A CD4+ T cells 14,15,69–71,103–108

CD8+ T cells 107,109,110

cd T cells 107,111–118

Tfh cells 119

NKT cells 120–124

Monocytes/macrophages 6,20,125

Granulocytes/neutrophils 6,126,127

LTi) like cells 34,128–131

Lin) innate lymphoid cells 34

Paneth cells 132

Mast cells 133

IL-17F CD4+ T cells 40,62,64,134,135

cd T cells 117,118

Epithelial cells 37,136

IL-17F/A CD4+ T cells 51,52,137

IL-21 CD4+ T cells 62–64,72,138,139

Tfh cells 119,140,141

NKT cells 142,143

IL-22 CD4+ T cells 40,74,144–147

CD8+ T cells 74

cd T cells 74,115

NK-like cells 46,148–150

Monocytes 74

CD11c+ DCsa 38

LTi-like cells 129–131

Lin) innate lymphoid cells 34

DCs, dendritic cells; LTi, lymphoid tissue inducer cell; NK, natural

killer cell; NKT, natural killer T cell; Tfh, T follicular helper cell.
aCD11c is also expressed on NK and LTi cell populations (reviewed

in 151).
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that ligand affinity, downstream signalling cascades, and

receptor tissue distribution could explain the difference in

intestinal pathology observed in IL-17A)/) and IL-17F)/)

mice following DSS administration.49,50 Besides IL-17A

and IL-17F (which exist as homodimers), there are also

reports of IL-17F/A heterodimers, adding to the complex-

ity by which these cytokines exert their effects on target

cells.51,52 Of note, mice deficient in IL-17RA or its down-

stream adaptor protein Act1 show reduced intestinal

inflammation in response to DSS or trinitrobenzene sul-

phonic acid (TNBS),53,54 a hapten reagent that triggers an

inflammatory reaction following intrarectal administration

in 50% ethanol to break the epithelial barrier. These find-

ings indicate that the IL-17F-driven inflammatory

response may dominate over the tissue-protective actions

of IL-17A in these two models of acute colitis.

Another Th17-type cytokine that plays a pathogenic

role in DSS and TNBS colitis is IL-21. Hence, IL-21)/)

mice challenged with either of these compounds develop

less inflammation compared with wild-type controls, and

administration of an IL-21R-Fc fusion protein attenuates

colitis in wild-type animals given DSS.55 Interleukin-21

Table 2. T helper 17-associated cytokines in colitis

Cytokine

Non-pathogenic or

tissue protective Pathogenic

Possible mechanism(s) of

tissue protective versus

pathogenic effects

IL-17A Anti-IL-17A mAb treatment exacerbates

DSS colitis41

IL-17A)/) mice show exacerbated DSS

colitis42

IL-17A)/) CD45RBhigh CD4+ T cells induce

severe colitis indistinguishable from that

induced by wild-type T cells32,65,66 or an

accelerated wasting disease with some

markers of more severe colitis compared

to that induced by wild-type T cells67

Anti-IL-17A mAb treatment fails to block

colitis induced by wild-type

CD45RBhigh CD4+ T cells66

Improved barrier function by:

Induction of claudin expression leading

to strengthened tight junctions44

Induction of mucin production45

Pro-inflammatory by induction of

neutrophil-attracting chemokines,

IL-1b, IL-6, TNF-a, G-CSF, and

GM-CSF, and MMPs49

IL-17F IL-17F)/) CD45RBhigh CD4+ T cells induce

severe colitis indistinguishable from that

induced by wild-type T cells66

IL-17F)/) mice

develop less severe

DSS colitis42

Pro-inflammatory by induction of

neutrophil-attracting chemokines,

IL-1b, IL-6, TNF-a, G-CSF, and GM-CSF,

and MMPs49

IL-21 IL-21)/) mice

develop less severe

DSS and TNBS colitis,

and IL-21R-Fc

ameliorates DSS

colitis55

Pro-inflammatory:

Induction of MMP production by

intestinal fibroblasts56

Induction of MIP-3a/CCL20 expression

by colonic epithelial cells57

Renders CD25) CD4+ T cells resistant to

Treg-mediated suppression58,59

Enhances IFN-c production from T cells

and NK cells60,61

Induces Th17 cells62–64

IL-22 IL-22)/) mice show increased weight loss

and mortality in DSS colitis46

IL-22)/) CD45RBhigh CD4+ T cells induce

severe colitis indistinguishable from that

induced by wild-type T cells66

IL-22)/) CD45RBhigh CD4+ T cells induce

more severe colitis in IL-22)/) Rag)/)

than in IL-22+/+ Rag)/) recipients46

Improved barrier function by:

Induction of epithelial cell proliferation24

Enhances goblet cell restoration and

mucus production47

DSS, dextran sodium sulphate; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte–macrophage colony-stimulating factor; IL-

21R-Fc, interleukin-21 receptor Fc fusion protein; MMP, matrix metalloproteinase; TNBS, trinitrobenzene sulphonic acid; TNF-a, tumour necro-

sis factor-a.
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has a wide variety of effects that may contribute to its

inflammatory role in the intestine. For example, IL-21

induces the production of tissue-degrading matrix metal-

loproteinases from intestinal fibroblasts,56 stimulates the

synthesis of the T-cell chemoattractant macrophage

inflammatory protein-3a (MIP-3a)/CCL20 from colonic

epithelial cells,57 renders CD25) CD4+ T cells resistant to

Treg-mediated suppression,58,59 and in some cases

enhances IFN-c production from T cells and natural killer

(NK) cells60,61 (Table 2). Moreover, T-cell-derived IL-21

is thought to act in an autocrine fashion to induce Th17

cells.62–64 Taken together, studies in acute chemical-

induced intestinal inflammation, such as that triggered by

DSS or TNBS where epithelial barrier function is dis-

rupted, have illustrated that different Th17-type cytokines

play distinct roles, some being tissue protective (IL-17A

and IL-22) and others pathogenic (IL-17F and IL-21).

To begin to define the role of T-cell versus non-T-cell-

derived Th17-type cytokines in colitis pathogenesis, sev-

eral groups have used the CD45RBhigh transfer model

where donor CD4+ T cells and/or Rag)/) recipients can

be made deficient for individual cytokines. To date, the

majority of studies have used cytokine-deficient

CD45RBhigh CD4+ T cells and transferred these into nor-

mal cytokine-sufficient Rag)/) hosts. As such, IL-17A)/)

CD45RBhigh CD4+ cells have in three independent reports

been shown to cause severe colitis indistinguishable from

that induced by wild-type CD45RBhigh CD4+ cells,32,65,66

demonstrating that T-cell-derived IL-17A is dispensable

for colitis induction. Similarly, a fourth study showed

minor differences in intestinal pathology between Rag)/)

recipients of wild-type versus IL-17A)/) CD45RBhigh

CD4+ cells, but reported an accelerated wasting disease in

recipients of IL-17A-deficient T cells,67 possibly reflecting

a lack of T-cell IL-17A-mediated protective effects system-

ically.

Similar to findings using IL-17A)/) CD45RBhigh cells,

T-cell-derived IL-17F or IL-22 is not required for colitis

pathogenesis in the T-cell transfer model, as CD45RBhigh

CD4+ cells isolated from IL-17F)/) or IL-22)/) animals

induce colitis indistinguishable from that caused by wild-

type cells.66 In a separate study, IL-22 was even shown to

play a protective role in the transfer model of colitis.

Hence, using various combinations of CD45RBhigh T cells

and Rag)/) hosts with or without the capacity to produce

IL-22, the most severe intestinal pathology was observed

when both donor CD45RBhigh cells and recipient Rag)/)

mice lacked IL-22.46 These observations suggest that both

T-cell and non-T-cell sources of IL-22 are tissue protec-

tive in T-cell transfer colitis. The authors went on to

show that NK cells are the likely innate source of the dis-

ease-protective IL-22 in this model.46

In contrast to the acute colitis models of DSS and

TNBS where a protective or pathogenic role of individual

Th17-type cytokines has been easier to reveal, chronic

models of colitis (such as the T-cell transfer model)

appear more complex and require blockade of multiple

cytokines to affect disease pathogenesis. In line with the

studies mentioned above in which T-cell-derived IL-17A

was shown to be dispensable for T-cell-transfer coli-

tis,32,65–67 depletion of this cytokine by anti-IL-17A mAb

treatment of Rag)/) mice given wild-type CD45RBhigh

CD4+ cells had no effect on the inflammatory response.66

In contrast, in the same study, colitis was ameliorated

when anti-IL-17A mAb was given to Rag)/) recipients of

IL-17F)/) CD45RBhigh CD4+ cells,66 suggesting redundant

pathogenic effects of IL-17A and IL-17F in this model.

Similarly, Rag)/) recipients of IL-17A)/) CD45RBhigh

CD4+ cells show a reduction in intestinal inflammation

when given anti-IL-6R mAb,65 and combined treatment

with anti-IL-17A plus anti-IL-6 mAb significantly ame-

liorates the severity of intestinal inflammation in Rag)/)

mice given wild-type CD45RBhigh CD4+ cells plus IL-

23.4 Together, these findings suggest that blocking indi-

vidual Th17-associated cytokines is not enough to see a

beneficial effect in chronic colitis; instead, it is neces-

sary to target multiple pathways or mediators involved

in either the Th17 response or in Th17 cell develop-

ment. Consequently, learning more about the function

and differentiation of Th17 lymphocytes is vital to the

development of therapeutic treatments of intestinal

inflammation.

Th17 cells, a heterogeneous and plastic
population

While cells of the Th17 lineage are able to produce IL-

17A, IL-17F, IL-21 and IL-22,16,17 it has become clear that

at the single-cell level, not all cells secrete all these cyto-

kines simultaneously. Instead, Th17 cells are a heteroge-

neous population containing a number of different

subpopulations expressing different combinations of

Th17-type cytokines.40,68 The cytokine profile of an

individual Th17 cell is likely to be influenced by the local

environment during T-cell priming. Hence, activation of

murine CD4+ cells in the presence of transforming

growth factor-b (TGF-b) + IL-626,69–71 or TGF-b +

IL-21,63,64 or of human CD4+ cells in the presence of

IL-1b + IL-672 or IL-1b or IL-23 alone,73 triggers T-cell

IL-17A and IL-17F secretion. TGF-b does not seem to be

required for IL-22 production though; instead this cyto-

kine is induced by IL-6 or IL-23.74 Th17 cells have also

been shown to produce TNF-a and IL-6,15 and one study

has reported the expression of IL-10 by Th17 cells gener-

ated with TGF-b and IL-6, a phenotype not observed

when cells were expanded with IL-23.75 In addition, much

attention has recently focused on cells co-expressing IL-

17A and IFN-c, a cytokine normally associated with Th1

cells, adding to the complexity of Th17 cell heterogeneity.

These IFN-c/IL-17 double-producing cells are found in
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both mice and humans, often associated with infection or

isolated from sites of inflammation.68,76–80 In the case of

the intestine, IFN-c+ IL-17A+ cells have been isolated

from the inflamed gut of patients with Crohn’s

disease.78,79 Much attention is currently focusing on eluci-

dating the role of IFN-c+ IL-17A+ cells in various inflam-

matory diseases. A recent report by Ahern et al.33 has

demonstrated that CD45RBhigh CD4+ T cells lacking the

IL-23R fail to develop into IFN-c/IL-17A double produc-

ers and do not trigger colitis in the T-cell transfer model,

suggesting that these cells develop through an IL-23-

dependent pathway and may play an important role in

disease pathogenesis.

Apart from their apparent IL-23 dependence, so far lit-

tle is known about how IFN-c+ IL-17A+ CD4+ T cells

arise. However, over the last few years it has become

apparent that cells of the Th17 lineage are plastic and fail

to maintain a stable phenotype when cultured in vitro or

when transferred in vivo to recipient mice,81,82 in certain

situations acquiring the ability to secrete additional cyto-

kines (e.g. IFN-c). This Th17 phenotype instability was

discovered initially using TCR transgenic CD4+ T cells

polarized in vitro towards Th17 cells,83–86 and more

recently with highly purified IL-17A+ or IL-17F+ popula-

tions isolated by cytokine-capture assays85,87,88 or by cell

sorting based on surface expression of reporters (such as

Thy-1.1, red fluorescent protein, or enhanced yellow fluo-

rescent protein [eYFP]) that mark cells that have activated

the IL-17F84,89,90 or IL-17A91 programme. There are some

general conclusions regarding Th17 stability that can be

drawn from these studies. First, TGF-b is needed to

maintain IL-17A production by in vitro-generated Th17

cells.84 Second, in vitro-generated Th17 cells can be con-

verted into Th1- or Th2-like cells when cultured under

Th1- or Th2-polarizing conditions.87 Moreover, both

IL-12 and IL-23 can induce IFN-c production by in vitro-

generated Th17 cells (Fig. 2); IL-12 causes a rapid and

near total suppression of the Th17 programme with

simultaneous up-regulation of the Th1 transcription fac-

tor T-bet and IFN-c, whereas IL-23 requires several

rounds of stimulation to cause a moderate deviation

from a Th17 to a Th1 phenotype.84 At the mRNA level,

Th17 cells deviated by IL-12 appear similar to Th1 cells,

with low levels of Rorc and Rora and increased expres-

sion of Tbx21, Fasl and Gzma.84 Interleukin-12 has been

reported to down-regulate IL-17 expression and induce

switching to IFN-c production also in human Th17

populations, both in Th17 clones78 and in in vitro-

derived Th17 and IFN-c+ IL-17A+ cells.68 Third, the

transition from Th17 cells to IFN-c-producing cells

requires signal transducer and activator of transcription

4 (STAT4) and T-bet,84 factors that are up-regulated fol-

lowing culture of Th17 populations with IL-12.84,85,88,92

Experiments have also been performed to analyse the

phenotype stability of in-vitro-generated Th17 cells fol-

lowing in vivo transfer. Hence, various Th17 populations

have been given to Rag)/) or wild-type mice followed by

examination of the cells at different time-points after

transfer. These experiments have revealed that in-vitro-

generated Th17 cells lose their IL-17 expression and start

to secrete IFN-c following transfer to T-cell-deficient

mice.83–85,89 One of these studies employed the T-cell

transfer model and Th17 cells (purified based on Thy1.1

expression marking activation of the IL-17F programme)

and showed that some of these cells when recovered from

mesenteric lymph nodes of colitic Rag)/) recipients had

extinguished IL-17 expression and switched on IFN-c
production.84 In contrast to the Th17 phenotype switch

observed in T-cell-deficient recipients, Nurieva et al.89

have reported that Th17 cells maintain their phenotype

when given to T-cell-sufficient wild-type mice. Together,

these findings suggest that the Th17 cell phenotype is

unstable in a lymphopenic environment, which promotes

homeostatic proliferation, but less so in normal hosts.

In contrast to the plasticity noted for in vitro-derived

Th17 cells, Lexberg et al.87 initially reported that in-vivo-

generated Th17 cells have a stable memory for IL-17A,

because these cells keep their production of IL-17A even

in the presence of IL-12 + anti-IL-4 mAb. One explana-

tion for these findings could be that Th17 cells generated

in vitro and in vivo show differences when it comes to

their expression of a functional IL-12R. Hence, Bending

et al.85 have shown that in-vitro-generated Th17 lympho-

cytes express IL-12Rb2 and are responsive to IL-12,

whereas in-vivo-derived Th17 cells lack this IL-12R sub-

unit.88,92 Subsequent studies have shown that ex vivo

Th17 cells can be converted to Th1-like cells in vitro fol-

lowing IFN-c-induced up-regulation of T-bet and acquisi-

tion of IL-12Rb288,92 (Fig. 2).

With the development of various reporter mice in

which cells that have activated the Th17 programme are

permanently marked,84,89–91 it is now possible to examine

Th17 cell phenotype stability in vivo in the whole animal

without the need for adoptive transfer experiments. The

first report where such a mouse strain has been used to

examine Th17 cell fate during an inflammatory disease

and after a challenge with an infectious agent is that by

Hirota et al.91 who made use of an IL-17A-eYFP reporter

mouse (which permanently marks IL-17A+ cells with

eYFP) to map the fate of IL-17A-secreting cells during

EAE and Candida albicans infection. The authors clearly

demonstrate that IFN-c-producing CD4+ T cells in the

draining lymph nodes and spinal cord of mice with EAE

were once IL-17A producers, as identified by their expres-

sion of eYFP.91 Moreover, the production of other pro-

inflammatory cytokines such as granulocyte–macrophage

colony-stimulating factor (GM-CSF), IL-2, and TNF-a by

effector CD4+ T cells in the spinal cord was derived

almost exclusively from ‘ex-Th17’ cells, with no apparent

contribution from Th1 cells.91 Importantly, when the IL-
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17A-eYFP reporter strain was crossed onto the IL-23p19)/)

background and mice were immunized with myelin oligo-

dendrocyte glycoprotein peptide in complete Freund’s

adjuvant (MOG-CFA) to induce EAE, eYFP+ T cells did

not become IFN-c+, demonstrating that the switch from

an IL-17A-producing T cell to an IFN-c-secreting cell

depends on IL-23 in vivo, subsequently shown to be the

result of IL-23-driven up-regulation of T-bet.91 In con-

trast to the results in the EAE model, infection of IL-17A-

eYFP reporter mice with C. albicans, which is rapidly

cleared from the host, did not give rise to eYFP+ IFN-c+

cells.91 Together, these findings indicate that Th17 cell

fate is shaped by the in vivo microenvironment, with

chronic inflammatory states promoting phenotype switch-

ing and the expression of IFN-c and other pro-inflamma-

tory cytokines in Th17 cells.
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Figure 2. Interleukin-12 (IL-12) and IL-23 promote switching from a T helper 17 (Th17) to a Th1 phenotype. In the presence of polarizing cyto-

kines, naive CD4+ T cells differentiate into Th1 or Th17 subsets, each characterized by its transcription factor T-bet and RORct, respectively, and

the production of Th1- versus Th17-associated cytokines. Whereas Th1 cells represent a stable phenotype, Th17 cells are plastic and have been

shown to acquire a Th1-like phenotype, up-regulating T-bet and interferon-c (IFN-c), in response to IL-12 or IL-23. This cartoon summarizes

data from both in vitro and in vivo experiments from several laboratories (as referenced in the main text) and depicts the cytokines, cytokine

receptors, transcription factors, and cell phenotypes involved in the switching process. Based on the observations of IFN-c/IL-17A double-produc-

ing CD4+ T cells, Th17 cells may switch to a Th1 phenotype via a Th17/1 intermediate stage where the cell expresses both RORct and T-bet and

produces cytokines characteristic of both Th17 and Th1 cells; however, direct switching from a Th17 to a Th1 phenotype has not yet been ruled

out. The asterisk indicates that in-vitro-generated Th17 cells express IL-12 receptor b2 (IL-12Rb2) and can be deviated towards a Th1 phenotype

by IL-12. In contrast, as represented by the dagger (and dashed outlines on the receptor), ex vivo Th17 cells do not express IL-12Rb2, but can

up-regulate this receptor subunit after exposure to IFN-c, allowing the cells to respond to IL-12 and become Th1 like. Similarly, IL-23 has been

shown to cause Th17 cells to activate the Th1 programme both in vitro and in vivo. Whether Th17/1 cells can be differentiated directly from

naive CD4+ precursors is yet to be determined. Black text and arrows denote polarizing cytokines, and text within boxes highlighted in grey rep-

resent cytokines secreted by the different Th subsets. TGF-b, transforming growth factor-b.
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Are ‘true’ Th17 cells really pathogenic or is a
switch in phenotype required for colitis
pathogenesis?

Given the essential role of IL-23 in colitis pathogenesis, is

there any evidence that this cytokine is driving intestinal

inflammation by promoting the deviation of Th17 cells

towards a Th1 phenotype, causing them to extinguish

IL-17 expression and up-regulate IFN-c and T-bet? A

pro-inflammatory role for IFN-c in the intestine has been

long acknowledged, as treatment with anti-IFN-c mAb

ameliorates the development of disease in both T-cell

transfer colitis93,94 and in the spontaneous and H. hepati-

cus-triggered inflammation observed in IL-10)/) ani-

mals.95,96 A link between IL-23 and IFN-c was noted

already in the original description of IL-23 by Oppmann

et al.3 when this cytokine was shown to stimulate IFN-c
production by human memory T cells. In addition, evi-

dence from both experimental Mycobacterium tuberculosis

infection and the H. hepaticus colitis model suggests the

involvement of IL-23 in inducing CD4+ T-cell IFN-c pro-

duction.7,97,98 Hence, it is possible that the pathogenic

role of IL-23 in driving colitis can be partly explained by

this cytokine’s ability to turn on IFN-c production84,91

and other pro-inflammatory mediators91 in Th17 cells,

subsequently leading to or exacerbating inflammation.

Evidence from the diabetes model supports the hypothesis

that a switch in cell phenotype can be of importance for

pathogenicity, as islet-reactive Th17 populations convert

into Th1-like cells and cause diabetes in an IFN-c-depen-

dent manner when transferred to non-obese diabetic/

severe combined immunodeficient (NOD/SCID) mice.85,86

In the case of intestinal inflammation, additional proper-

ties besides IFN-c production may determine disease-

inducing potential of switched Th17 cells, as IFN-c)/)

CD4+ T cells are themselves colitogenic upon transfer to

T-cell-deficient hosts, although in most cases less so than

wild-type CD4+ cells.7,99,100 Nevertheless, the inability of

IL-23R-deficient CD4+ T cells to develop into IFN-c+

IL-17A+ cells and to induce colitis in Rag)/) recipients

suggests that a phenotype switch may be important for

disease pathogenesis also in the intestine.33 In this case,

IFN-c may be a marker of such a switch rather than

being the pathogenic factor itself. Previous studies have

demonstrated that CD4+ T cells deficient in either

STAT4,99 T-bet,101 RORct,66 or STAT3102 are unable to

induce colitis after transfer to T-cell-deficient mice. These

findings argue that these key regulators of Th1 and/or

Th17 cell development are needed to induce disease; how-

ever, exactly where at the single-cell level these STAT pro-

teins and transcription factors are required still remains

to be determined. As removal of only one of the four key

regulators (STAT4 or T-bet for Th1 cells, or STAT3 or

RORct for Th17 cells) renders T lymphocytes unable to

trigger colitis, it is possible that a mixture of both Th1

and Th17 cells are needed for the inflammatory response,

and a defect in one subset cannot be compensated for by

the presence of the other subset (Fig. 3, red arrows). An

alternative possibility is that these four key regulators

need to be expressed in the same cell (Fig. 3, blue

arrows). In this regard, it would be interesting to examine

whether Th17 cells that have extinguished their IL-17
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Figure 3. Do signal transducer and activator of transcription 3

(STAT3), STAT4, nuclear retinoic acid-related orphan receptor

(ROR)ct, and T-bet have to be expressed in the same CD4+ T cell to

induce a colitogenic phenotype? CD4+ T cells deficient in STAT3,

STAT4, RORct, or T-bet fail to induce colitis after transfer to T-cell-

deficient mice, indicating that factors important for either T helper 1

(Th1) or Th17 differentiation are required to induce intestinal inflam-

mation. However, it is not known exactly where at the stage of differ-

entiation these STAT proteins and transcription factors are required

for disease induction. We suggest two alternative hypotheses to explain

why a deficiency in only one of these four key regulators renders T cells

unable to induce colitis. In the first scenario (red arrows), STAT4/T-

bet are required for Th1 development and STAT3/RORct for Th17 cell

differentiation, and a mixture of these two populations are needed to

trigger inflammation. In the second scenario (blue arrows), STAT3/

RORct are required for the initial Th17 cell differentiation, and

STAT4/T-bet for the subsequent phenotype switch of that cell towards

an interferon-c (IFN-c)+ interleukin-17A (IL-17A)+ and later an

IFN-c+ ‘ex-Th17’ cell. These ‘ex-Th17’ cells show similarities to Th1

cells, but they also display distinct characteristics such as high levels of

aryl hydrocarbon receptor (AhR) mRNA and surface IL-1 receptor

(IL-1R) expression. ‘Ex-Th17’ cells may also secrete other pro-inflam-

matory mediators not produced by Th1 cells, thereby contributing to

pathology. Determining exactly when the key STAT proteins and tran-

scription factors are acting at the single-cell level during effector T-cell

development in colitis may help shed light on the specific contribution

of Th1, Th17, Th17/1, and ‘ex-Th17’ cells to intestinal pathology.
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expression and turned on IFN-c are identical to true Th1

cells at the cellular and molecular level. Recent evidence

suggests that differences do exist, as in contrast to Th1

cells, IFN-c+ ‘ex-Th17’ cells maintain high levels of aryl

hydrocarbon receptor (AhR) mRNA and cell surface

IL-1R.91 By using reporter mice and cell separation based

on cytokine secretion profile and IL-1R1 expression it

should in the future be possible to further characterize

these two populations, as well as the IFN-c/IL-17A double

producers, to examine these cells in more detail and look

for other factors that may be involved in disease patho-

genesis.

Taken together, Th17-type responses can have both path-

ogenic and disease-protective roles in the intestine depend-

ing on the setting and microenvironment. Many questions

still remain to be answered before we will fully understand

colitis pathogenesis, one of them being that of Th17 plastic-

ity and the role of these cells and their cytokines in the

intestine. Hopefully new knowledge gained from experi-

mental models will help to shed light on these and other

related questions, resulting in information that subse-

quently will be translated to and help our understanding of

the even more complex scenario of human IBD.
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